【期刊信息】

Message

刊名:计算机光盘软件与应用
主办:中国大恒公司大恒电子出版社
主管:中国科学院
ISSN:1007-9599
CN:11-3907/TP
语言:中文
周期:半月
影响因子:0
期刊分类:计算机软件及计算机应用

现在的位置:主页 > 期刊导读 >

工业通用技术及设备论文_基于数据学习的结构静

来源:计算机光盘软件与应用 【在线投稿】 栏目:期刊导读 时间:2021-12-07

作者:网站采编

关键词:

【摘要】文章摘要:针对目前机械结构优化中建立预测模型代价较高的问题,提出了一种基于数据学习的结构静力学性能预测方法。以悬臂梁为研究对象,建立有限元仿真模型以获取位移场数据,

文章摘要:针对目前机械结构优化中建立预测模型代价较高的问题,提出了一种基于数据学习的结构静力学性能预测方法。以悬臂梁为研究对象,建立有限元仿真模型以获取位移场数据,构建边界条件-位移场代理模型,预测结果表明位移场分布趋势与实际一致,载荷为1 000N和1 600N时最大位移相对误差分别为-0.02%和-0.47%。文中讨论了均布力大小和集中力作用位置对位移场预测结果的影响,结果表明随着载荷幅值增加,预测误差有所增加。相比均布力,集中力载荷下的预测误差更大,且加载位置靠近边缘处的误差更大。反演问题分别将位移场作为输入,将均布力大小和集中力位置作为输出构建位移场-边界条件代理模型,对载荷1 000N和1 600N的预测误差分别为0.15%和-0.48%,对5mm和10mm处的载荷位置预测误差分别为0.38%和-1.84%,实现了对力边界条件的高精度预测。所提方法从数据学习角度出发,可为机械结构的静力学性能预测提供一种新的思路。

文章关键词:

论文分类号:TB121



文章来源:《计算机光盘软件与应用》 网址: http://www.jsjgprjyyy.cn/qikandaodu/2021/1207/1720.html


上一篇:公路与水路运输论文_基于计算机视觉技术的桥梁
下一篇:自动化技术论文_基于物理信息的神经网络:最新