刊名:计算机光盘软件与应用
主办:中国大恒公司大恒电子出版社
主管:中国科学院
ISSN:1007-9599
CN:11-3907/TP
语言:中文
周期:半月
影响因子:0
期刊分类:计算机软件及计算机应用
文章摘要:从非结构化文本中联合提取实体和关系是信息抽取中的一项重要任务。现有的方法取得了可观的性能,但仍受到一些固有的限制,如错误传播、预测存在冗余性、无法解决关系重叠问题等。为此,提出一种基于图神经网络的联合实体关系抽取模型BSGB(BiLSTM+SDA-GAT+BiGCN)。BSGB分为两个阶段,第一阶段将语义依存分析扩展到语义依存图,提出融合语义依存图的图注意力网络(SDA-GAT),通过堆叠BiLSTM和SDA-GAT,提取句子序列和局部依赖特征,并进行实体跨度检测和初步的关系预测;第二阶段构建关系加权GCN,进一步建模实体和关系的交互,完成最终的实体关系三元组抽取。在NYT数据集上的实验结果表明,该模型F1值达到了67.1%,对比在该数据集的基线模型提高了5.2%,对重叠关系的预测也有大幅改善。
文章关键词:
文章来源:《计算机光盘软件与应用》 网址: http://www.jsjgprjyyy.cn/qikandaodu/2021/1116/1676.html