【期刊信息】

Message

刊名:计算机光盘软件与应用
主办:中国大恒公司大恒电子出版社
主管:中国科学院
ISSN:1007-9599
CN:11-3907/TP
语言:中文
周期:半月
影响因子:0
期刊分类:计算机软件及计算机应用

现在的位置:主页 > 期刊导读 >

环境科学与资源利用论文_基于双向门控循环单元

来源:计算机光盘软件与应用 【在线投稿】 栏目:期刊导读 时间:2021-10-07

作者:网站采编

关键词:

【摘要】文章摘要:为了更好的预测水体氨氮(NH 3 -N)的变化规律,本文提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合水质预测方法(CCB).通过CCE

文章摘要:为了更好的预测水体氨氮(NH3-N)的变化规律,本文提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合水质预测方法(CCB).通过CCEEMDAN将水质NH3-N原始数据分解成一系列模态分量,以降低其复杂度;然后利用BiGRU神经网络对各分量进行预测.以2017年6月~2020年2月鄱阳湖的氨氮(NH3-N)数据进行模型性能验证.在数值实验中所提出的CCB模型,在1天后的NH3-N预测中平均绝对百分比误差为3.38%,在7天后的NH3-N预测中平均绝对百分比误差为6.82%,在15天后的NH3-N预测中平均绝对百分比误差为9.41%,并且优于本文中参与比较的所有模型.该结果证明了CCB模型在氨氮预测方面具有良好的预测性能.

文章关键词:

项目基金:


文章来源:《计算机光盘软件与应用》 网址: http://www.jsjgprjyyy.cn/qikandaodu/2021/1007/1587.html


上一篇:船舶工业论文_一种基于极限学习机的推力分配方
下一篇:铁路运输论文_基于强化学习的地铁站空调系统节

Copyright © 2018 《计算机光盘软件与应用》杂志社 版权所有
投稿电话: 投稿邮箱: